Fermat$501553$ - ορισμός. Τι είναι το Fermat$501553$
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Fermat$501553$ - ορισμός

POSITIVE INTEGER OF THE FORM (2^(2^N))+1
Fermat prime; Fermat numbers; 4294967297 (number); Fermat primes; Fermat Numbers; Generalized Fermat number; Generalized Fermat prime; Fermat Primes; Fermat Prime; 4294967297; Primality of Fermat numbers; Factorization of Fermat numbers; Generalized Fermat numbers; Generalized Fermat primes; Generalized Fermat
  • Number of sides of known constructible polygons having up to 1000 sides (bold) or odd side count (red)

Fermat prime         
<mathematics> A prime number of the form 2^2^n + 1. Any prime number of the form 2^n+1 must be a Fermat prime. Fermat conjectured in a letter to someone or other that all numbers 2^2^n+1 are prime, having noticed that this is true for n=0,1,2,3,4. Euler proved that 641 is a factor of 2^2^5+1. Of course nowadays we would just ask a computer, but at the time it was an impressive achievement (and his proof is very elegant). No further Fermat primes are known; several have been factorised, and several more have been proved composite without finding explicit factorisations. Gauss proved that a regular N-sided polygon can be constructed with ruler and compasses if and only if N is a power of 2 times a product of distinct Fermat primes. (1995-04-10)
Fermat number         
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form
Fermat curve         
  • The Fermat cubic surface <math>X^3+Y^3=Z^3</math>
MATHEMATICAL CONCEPT
Fermat varieties; Fermat variety
In mathematics, the Fermat curve is the algebraic curve in the complex projective plane defined in homogeneous coordinates (X:Y:Z) by the Fermat equation

Βικιπαίδεια

Fermat number

In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form

F n = 2 2 n + 1 , {\displaystyle F_{n}=2^{2^{n}}+1,}

where n is a non-negative integer. The first few Fermat numbers are:

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... (sequence A000215 in the OEIS).

If 2k + 1 is prime and k > 0, then k must be a power of 2, so 2k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023, the only known Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537 (sequence A019434 in the OEIS); heuristics suggest that there are no more.